РП-внеурочной-деятельности-Решение-нестандартных-задач-по-математике.-9-класс

Муниципальное казенное общеобразовательное учреждение
"Вновь-Юрмытская средняя общеобразовательная школа "

СОГЛАСОВАНО

УТВЕРЖДЕНО

Заместитель директора
по УВР

Директор

Е.Г.Деревнина
Протокол №1 от «29» 08.
2024 г.

Н.П.Мурашкина
Приказ №3008-2 от «30» 08.
2024 г.

РАБОЧАЯ ПРОГРАММА
Курса внеурочной деятельности
«Решение нестандартных задач по математике»
9 класс

С. Вновь-Юрмытское 2024

Пояснительная записка
Рабочая программа внеурочной деятельности «Решение нестандартных задач» для 9 класса
определяет общую стратегию обучения, воспитания и развития, обучающихся средствами учебного предмета в
соответствии с целями изучения математики.
Предлагаемые занятия разработаны с учётом учебной программы для общеобразовательных учреждений и
ориентированы на многогранное рассмотрение содержания курса математики по многим содержательным
линиям программы. При проведении внеурочных занятий предполагается учитывать возрастные и
индивидуальные особенности учащихся и использовать разно уровневые задания с учётом учебной программы
по математике. На занятиях желательно использовать соответствующий наглядный материал, использовать
возможности новых информационных технологий, технических средств обучения.

Курс рассчитан на 34 занятий в год, в неделю 1 час.
Цели и задачи

Цели внеурочного курса:








привитие интереса учащимся к математике;
углубление и расширение знаний, обучающихся по математике с целью качественной подготовки учащихся
к итоговой аттестации;
развитие математического кругозора, мышления, исследовательских умений учащихся;
формирование у учащихся умения рассуждать,
доказывать и осуществлять поиск решений алгебраических задач на материале алгебраического
компонента;
формирование опыта творческой деятельности,
развитие мышления и математических способностей школьников.

Задачи курса:













систематизация, обобщение и углубление учебного материала, изученного на уроках алгебры;
развитие познавательного интереса школьников к изучению математики;
формирование процессуальных черт их творческой деятельности;
продолжение работы по ознакомлению учащихся с общими и частными эвристическими приемами поиска
решения стандартных и нестандартных задач;
развитие логического мышления и интуиции учащихся;
расширение сфер ознакомления с нестандартными методами решения алгебраических задач.
Научить учащихся выполнять тождественные преобразования выражений.
Научить учащихся основным приемам решения уравнений, неравенств и их систем.
Научить строить графики и читать их.
Научить различным приемам решения текстовых задач, геометрических задач.
Помочь овладеть рядом технических и интеллектуальных умений на уровне свободного их использования.
1. Планируемые результаты освоения учебного курса.

Личностные результаты:
Ответственное отношение к учению, готовность и способность к саморазвитию и самообразованию на основе
мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной
траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учетом
устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду.
Формирование целостного мировоззрения, соответствующего современному уровню развития науки и
общественной практики.
Освоение социальных норм, правил поведения, ролей и форм социальной жизни.
Развитие морального сознания и компетентности в решении моральных проблем на основе личностного
выбора, формирования нравственных чувств и нравственного поведения, осознанного и ответственного
отношения к нравственным поступкам.
Формирование коммуникативной компетентности в общении и сотрудничестве.
Формирование способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений
Метапредметные результаты обучения
Регулятивные УУД
определять собственные проблемы и причины их возникновения при работе с математическими объектами;
формулировать собственные версии или применять уже известные формы и методы решения математической

проблемы, формулировать предположения и строить гипотезы относительно рассматриваемого объекта и
предвосхищать результаты своей учебно-познавательной деятельности;
определять пути достижения целей и взвешивать возможности разрешения определенных учебнопознавательных задач в соответствии с определенными критериями и задачами;
выстраивать собственное образовательное подпространство для разрешения определенного круга задач,
определять и находить условия для реализации идей и планов (самообучение);
самостоятельно выбирать среди предложенных ресурсов наиболее эффективные и значимые при работе с
определенной математической моделью;
уметь составлять план разрешения определенного круга задач, используя различные схемы, ресурсы
построения диаграмм, ментальных карт, позволяющих произвести логико - структурный анализ задачи;
уметь планировать свой образовательный маршрут, корректировать и вносить определенные изменения,
качественно влияющие на конечный продукт учебно-познавательной деятельности;
умение качественно соотносить свои действия с предвкушаемым итогом учебно-познавательной деятельности
посредством контроля и планирования учебного процесса в соответствии с изменяющимися ситуациями и
применяемыми средствами и формами организации сотрудничества, а также индивидуальной работы на уроке;
умение отбирать соответствующие средства реализации решения математических задач, подбирать
инструменты для оценивания своей траектории в работе с математическими понятиями и моделями;
Познавательные УУД
умение определять основополагающее понятие и производить логико-структурный анализ, определять
основные признаки и свойства с помощью соответствующих средств и инструментов;
умение проводить классификацию объектов на основе критериев, выделять основное на фоне второстепенных
данных;
умение проводить логическое рассуждение в направлении от общих закономерностей изучаемой задачи до
частных рассмотрений;
умение строить логические рассуждения на основе системных сравнений основных компонентов изучаемого
математического раздела или модели, понятия или классов, выделяя определенные существенные признаки
или критерии;
умение выявлять, строить закономерность, связность, логичность соответствующих цепочек рассуждений при
работе с математическими задачами, уметь подробно и сжато представлять детализацию основных
компонентов при доказательстве понятий и соотношений на математическом языке;
умение организовывать поиск и выявлять причины возникающих процессов, явлений, наиболее вероятные
факторы, по которым математические модели и объекты ведут себя по определенным логическим законам,
уметь приводить причинно-следственный анализ понятий, суждений и математических законов;
умение строить математическую модель при заданном условии, обладающей определенными
характеристиками объекта при наличии определенных компонентов формирующегося предполагаемого
понятия или явления;
умение переводить текстовую структурно-смысловую составляющую математической задачи на язык
графического отображения - составления математической модели, сохраняющей основные свойства и
характеристики;
умение задавать план решения математической задачи, реализовывать алгоритм действий как пошаговой
инструкции для разрешения учебно-познавательной задачи;
умение строить доказательство методом от противного;
умение работать с проблемной ситуацией, осуществлять образовательный процесс посредством поиска
методов и способов разрешения задачи, определять границы своего образовательного пространства;
уметь ориентироваться в тексте, выявлять главное условие задачи и устанавливать соотношение
рассматриваемых объектов;
умение переводить, интерпретировать текст в иные формы представления информации: схемы, диаграммы,
графическое представление данных;
Коммуникативные УУД
умение работать в команде, формирование навыков сотрудничества и учебного взаимодействия в условиях
командной игры или иной формы взаимодействия;
умение распределять роли и задачи в рамках занятия, формируя также навыки организаторского характера;
умение оценивать правильность собственных действий, а также деятельности других участников команды;
корректно, в рамках задач коммуникации, формулировать и отстаивать взгляды, аргументировать доводы,
выводы, а также выдвигать контаргументы, необходимые для выявления ситуации успеха в решении той или
иной математической задачи;
умение пользоваться математическими терминами для решения учебно-познавательных задач, а также строить
соответствующие речевые высказывания на математическом языке для выстраивания математической модели;

уметь строить математические модели с помощью соответствующего программного обеспечения, сервисов
свободного отдаленного доступа;
Предметные результаты:
формирование навыков поиска математического метода, алгоритма и поиска решения задачи ;
умение работать с таблицами, со схемами, с текстовыми данными; уметь преобразовывать знаки и символы в
доказательствах и применяемых методах для решения образовательных задач;
умение приводить в систему, сопоставлять, обобщать и анализировать информационные компоненты
математического характера и уметь применять законы и правила для решения конкретных задач;
умение выделять главную и избыточную информацию, производить смысловое сжатие математических
фактов, совокупности методов и способов решения; уметь представлять в словесной форме, используя схемы
и различные таблицы, графики и диаграммы, карты понятий и кластеры, основные идеи и план решения той
или иной математической задачи.

2. Содержание программы
Введение. (1ч)
История развития математики. Раздел 1 Модуль
«Алгебра» (25 ч)Системы счисления (2 ч)
Понятия числа. Рациональные числа и измерения. Десятичные дроби. Действия с десятичными
дробями. Обыкновенные дроби. Действия с
обыкновенными дробями.
Алгебраические выражения (2 ч)
Числовые выражения и выражения с переменными. Преобразование алгебраических выражений с
помощью формул сокращенного умножения. Дробно-рациональные выражения. Тождественные
преобразования дробно-рациональных выражений.
Уравнения и системы уравнений (4 ч)
Равносильность уравнений, их систем. Следствие из уравнения и системы уравнений. Основные методы
решения рациональных уравнений: разложение на множители, введение новой переменной.Квадратные
уравнения. Теорема Виета. Решение квадратных уравнений.
Квадратный трехчлен. Нахождение корней квадратного трехчлена. Разложение квадратноготрехчлена на
множители.
Основные приемы решения систем уравнений.
Неравенства и системы неравенств (3 ч)
Равносильность неравенств, их систем. Свойства неравенств. Решение неравенств. Метод интервалов –
универсальный метод решения неравенств. Метод оценки при решении неравенств.Системы неравенств,
основные методы их решения.
Функции и их графики (5 ч)
Свойства графиков, чтение графиков. Элементарные приемы построения и преобразования графиков
функций. Графическое решение уравнений и их систем. Графическое решение неравенстви их систем.
Построение графиков «кусочных» функций.
Текстовые задачи (7 ч)
Основные типы текстовых задач. Алгоритм моделирования практических ситуаций и исследования
построенных моделей с использованием аппарата алгебры. Задачи на равномерное движение.
Задачи на движение по реке. Задачи на работу. Задачи на проценты. Арифметические текстовые задачи.
Задачи с геометрическими фигурами. Нестандартные методы решения задач (графическиеметоды, перебор
вариантов).
Элементы комбинаторики и теории вероятности(2ч)
Раздел 2 Модуль «Геометрия» (7 ч)
Треугольники (3 ч)
Виды треугольников и их свойства. Теорема Пифагора. Синус, косинус и тангенс острого угла
прямоугольного треугольника. Перпендикуляр и наклонная. Соотношения между сторонами и углами
треугольника.
Четырёхугольники (3 ч)
Параллелограмм и его свойства. Признаки параллелограмма. Прямоугольник, ромб, квадрат и их
свойства. Теорема Фалеса. Средняя линия треугольника. Трапеция. Средняя линия трапеции.
Окружность (1 ч)
Касательная к окружности. Центральные и вписанные углы. Длина окружности и площадь круга.
Итоговое занятие (1 ч)

3. Тематическое планирование внеурочного курса
по математике в 9 классе
Тема урока

Элементы содержания

Универсальные учебные
действия (УУД)

Универсальные
учебные действия
(УУД)

Универсальные учебные
действия (УУД)

предметные

личностные

метапредметные

Ввести понятие числа.
Объяснить
использование
рациональных чисел для
измерений. Научить
проводить измерения и
решать простейшие
задачи на измерения.

Дают адекватную
оценку результатам
своей учебной
деятельности,
проявляют
познавательный
интерес к изучению
предмета, к способам
решения
познавательных
задач

Коммуникативные: уметь
находить в тексте
информацию,
необходимую для решения
задачи.
Регулятивные:
формировать целевые
установки учебной
деятельности, выстраивать
алгоритм действий.
Познавательные: уметь
выделять существенную
информацию из текстов
разных видов
Коммуникативные:
развивать умение точно и
грамотно выражать свои
мысли, отстаивать свою
точку зрения в процессе
дискуссии. Регулятивные:
обнаруживать и
формулировать учебную
проблему, составлять план
выполнения работы.
Познавательные: уметь
строить рассуждения в
форме связи простых
суждений об объекте, его
строении, свойствах и
связях
Коммуникативные:
формировать навыки
учебного сотрудничества в
ходе индивидуальной и
групповой работы.
Регулятивные:
удерживать цель
деятельности до получения
ее результата.
Познавательные: уметь
осуществлять выбор
наиболее эффективных
способов решения

1
2

Вводный урок.
Понятия числа.
Рациональные числа и
измерения.

История математики.
Понятие числа. Использование
рациональных чисел для
измерений. Решать простейшие
задачи на измерения.

3

Десятичные дроби и
действия
с
ними.
Обыкновенные дроби и
действия с ними.

Понятие десятичной и
обыкновенной
дроби. Формирование навыки
выполнения действий с
десятичными дробями.

Ввести понятие
десятичной
дроби. Формировать
навыки выполнения
действий с десятичными
дробями. Ввести понятие
обыкновенной
дроби. Формировать
навыки выполнения
действий с
обыкновенными
дробями.

Выражают
положительное
отношение к
процессу познания;
адекватно оценивают
свою учебную
деятельность;
применяют правила
делового
сотрудничества

4

Числовые выражения и
выражения с
переменными.
Преобразование
алгебраических
выражений с помощью
формул сокращенного
умножения.

Решение числовых выражений и
выражения с переменными.

Познакомить с
числовыми
выражениями, выражени
ями с переменными,
историческим
очерком. Научить
выполнять
преобразования
алгебраических
выражений с помощью
формул сокращенного
умножения.

Умение ясно и точно
излагать свои мысли
в письменной речи,
ответственное
отношение к учению.

5

Дробно-рациональные
выражения.
Тождественные
преобразования дробнорациональных
выражений.

Дробно-рациональные
выражения.

Познакомить с
различными видами
дробно-рациональных
выражений. Научить
выполнять
тождественные
преобразования дробнорациональных
выражений.

Умение ясно, точно
излагать свои мысли
в письменной и
устной речи,
активность при
решении задач.

Коммуникативные:
организовывать и планировать учебное
сотрудничество с
учителем и сверстниками.
Регулятивные:
определять новый уровень
отношения к самому себе
как субъекту деятельности.
Познавательные: уметь
осуществлять выбор
наиболее эффективных
способов решения

6

Равносильность
уравнений, их систем.

Решение равносильности
уравнений, их систем, следствия

Дать понятие
равносильности

Объясняют самому
себе свои наиболее

Коммуникативные:
формировать навыки

Следствие из уравнения
и системы уравнений.
Основные приемы
решения систем
уравнений.

из уравнения и системы
уравнений.

уравнений, их систем,
следствия из уравнения и
системы уравнений.
Познакомить с
основными приемами
решения систем
уравнений. Формировать
навыки использования
основных приемов
решения систем
уравнений.

заметные
достижения,
выражают
положительное
отношение к
процессу познания и
оценивают свою
учебную
деятельность.

учебного сотрудничества в
ходе индивидуальной и
групповой работы.
Регулятивные:
формировать
целеполагание как
постановку учебной задачи
на основе соотнесения
того, что уже известно и
усвоено учащимися, и того,
что еще неизвестно.
Познавательные:
выявлять особенности (качества, признаки) разных
объектов в процессе их
рассмотрения

7

Основные методы
решения рациональных
уравнений: разложение
на множители, введение
новой переменной

Методы решения рациональных
уравнений:
разложение
на
множители,
введение
новой
переменной.

Познакомить с
основными методами
решения рациональных
уравнений: разложение
на множители, введение
новой переменной.
Формировать навык
использования данных
методов для решения
уравнений.

Объясняют самому
себе свои наиболее
заметные
достижения,
проявляют
познавательный
интерес к изучению
предмета, к способам
решения задач

Коммуникативные:
развивать умение точно и
грамотно выражать свои
мысли, отстаивать свою
точку зрения в процессе
дискуссии. Регулятивные:
обнаруживать и
формулировать учебную
проблему, составлять план
выполнения работы.
Познавательные: уметь
строить рассуждения в
форме связи простых
суждений об объекте, его
строении, свойствах и
связях

8

Квадратные уравнения.
Теорема Виета. Решение
квадратных уравнений.

Решение квадратных уравнений.

Дать
понятие
квадратного уравнения.
Познакомить
с
историческим очерком.
Формировать
умение
применять теорему Виета
для решения квадратных
уравнений.

Выражают
положительное
отношение к
процессу познания;
адекватно оценивают
свою учебную
деятельность;
применяют правила
делового
сотрудничества

9

Квадратный трехчлен.
Нахождение корней
квадратного трехчлена.
Разложение квадратного
трехчлена на множители.

Квадратный
трехчлен.
Нахождение корней квадратного
трехчлена.

Дать определение
квадратного трехчлена.
Формировать умения
находить корни
квадратного трехчлена,
выполнять разложение
квадратного трехчлена на
множители.

Дают адекватную
оценку результатам
своей учебной
деятельности,
проявляют
познавательный
интерес к изучению
предмета, к способам
решения
познавательных
задач

10

Равносильность
неравенств, их систем.
Свойства неравенств.

Решение неравенств. Навыки
решения неравенств

Ввести понятие
равносильности
неравенств, их систем.
Формировать навыки
применения свойств
неравенств.

Положительное
отношение к урокам
математики,
ответственное
отношение к учению,
совершенствование
имеющихся знаний и
умений

Коммуникативные:
формировать навыки
учебного сотрудничества в
ходе индивидуальной и
групповой работы.
Регулятивные:
удерживать цель
деятельности до получения
ее результата.
Познавательные: уметь
осуществлять выбор
наиболее эффективных
способов решения
Регулятивные – работают
по составленному плану,
используют основные и
дополнительные средства
получения информации.
Познавательные –
передают содержание в
сжатом или развернутом
виде.
Коммуникативные –
умеют понимать точку
зрения другого
Коммуникативные:
развивать умение обмениваться знаниями между
одноклассниками для
принятия эффективных
совместных решений.
Регулятивные: определять
последовательность
промежуточных действий с
учетом конечного
результата, составлять
план.
Познавательные: владеть
общим приемом решения
учебных задач

11

Решение
Метод

Решение
неравенств.
интервалов

Познакомить с
основными приемами

Умение ясно, точно
излагать свои мысли

неравенств.
интервалов–

Метод

Коммуникативные:
слушать других, пытаться

универсальный
метод
решения неравенств.

решения неравенств, в
частности, с методом
интервалов–
универсальным методом
решения неравенств.
Формировать навыки
решения неравенств
методом интервалов.

в письменной и
устной речи,
активность при
решении задач.

принимать другую точку
зрения, быть готовым
изменить свою.
Регулятивные:
формировать целевые установки учебной
деятельности, выстраивать
последовательность
необходимых операций
(алгоритм действий).
Познавательные: уметь
осуществлять сравнение и
классификацию по
заданным критериям
Коммуникативные: уметь
точно и грамотно выражать
свои мысли при
обсуждении изучаемого
материала.
Регулятивные: определять
последовательность
промежуточных действий с
учетом конечного
результата, составлять
план.
Познавательные:
воспроизводить по памяти
информацию,
необходимую для решения
учебной задачи
Коммуникативные:
формировать навыки
учебного сотрудничества в
ходе индивидуальной и
групповой работы.
Регулятивные:
удерживать цель
деятельности до получения
ее результата.
Познавательные: уметь
осуществлять выбор
наиболее эффективных
способов решения

12

Метод
оценки
при
решении неравенств.
Системы
неравенств,
основные методы их
решения

Метод оценки при решении
неравенств и их систем

Познакомить с метод
оценки при решении
неравенств и их систем.
Формировать навыки:
решения неравенств
методом оценки;
использования основных
приёмов решения систем
неравенств.

Положительное
отношение к урокам
математики,
ответственное
отношение к учению,
совершенствование
имеющихся знаний и
умений

13

Свойства
графиков,
чтение графиков.

Системы неравенств, основные
методы их решения.

Познакомить с метод
оценки при решении
неравенств и их систем.
Формировать навыки:
решения неравенств
методом оценки;
использования основных
приёмов решения систем
неравенств.

Желание
совершенствовать
имеющиеся знания,
способность к
самооценке своих
действий.

14

Элементарные приемы
построения
и
преобразования графиков
функций.

Графики
движения
в
прямоугольной
системе
координат. Чтение графиков
движения и применение их для
решения текстовых задач.

Познакомить с
графическим способом
решения задач на
движение

Положительное
отношение к урокам
математики,
ответственное
отношение к учению,
совершенствование
имеющихся знаний и
умений.

Коммуникативные:
организовывать и планировать учебное
сотрудничество с
учителем и сверстниками.
Регулятивные:
определять новый уровень
отношения к самому себе
как субъекту деятельности.
Познавательные: уметь
осуществлять выбор
наиболее эффективных
способов решения

15

Графическое
решение
уравнений и их систем.

Решение текстовых задач с
использованием элементов
геометрии.

Научиться применять
приобретенные знания,
умения, навыки в
конкретной деятельности

Навыки
конструктивного
взаимодействия.

Коммуникативные:
развивать умение обмениваться знаниями между
одноклассниками для
принятия эффективных
совместных решений.
Регулятивные: определять
последовательность
промежуточных действий с
учетом конечного
результата, составлять
план.
Познавательные: владеть
общим приемом решения
учебных задач

16

Графическое
решение
неравенств и их систем.

Особенности выбора переменных
и методики решения задач на
движение.

Совершенствовать
вычислительную
культуру учащихся

Желание
совершенствовать
имеющиеся знания,
способность к
самооценке своих
действий

17

Построение
графиков
«кусочных» функций.

Составление таблицы данных
задачи на движение и её значение
для составления математической
модели.

Научиться применять
приобретенные знания,
умения, навыки в
конкретной деятельности

Осознанность учения
и личная
ответственность,
способность к
самооценке своих
действий.

18

Задачи на равномерное
движение.

Решение задач на равномерное
движение

Формировать навыки
решения задач на
равномерное движение.

Желание
совершенствовать
имеющиеся знания,
способность к
самооценке своих
действий.

19

Задачи на движение по
реке.

Решение задач на движение по
реке.

Формировать навыки
решения задач на
движение по реке.

Умение ясно и точно
излагать свои мысли
в письменной речи,
ответственное
отношение к учению.

20

Задачи на работу.

Решение задач на работу.

Формировать навыки
решения задач на работу.

Умение ясно, точно
излагать свои мысли
в письменной и
устной речи,
активность при
решении задач.

21

Задачи на проценты.

Решение задач на проценты.

Формировать навыки
решения задач на
проценты.

Понимать смысл
поставленной задачи,
находчивость,
активность при

Коммуникативные:
слушать других, пытаться
принимать другую точку
зрения, быть готовым
изменить свою.
Регулятивные:
формировать целевые установки учебной
деятельности, выстраивать
последовательность
необходимых операций
(алгоритм действий).
Познавательные: уметь
осуществлять сравнение и
классификацию по
заданным критериям
Коммуникативные:
формировать навыки
учебного сотрудничества в
ходе индивидуальной и
групповой работы.
Регулятивные:
удерживать цель
деятельности до получения
ее результата.
Познавательные: уметь
осуществлять выбор
наиболее эффективных
способов решения
Коммуникативные: уметь
выслушивать мнение
членов команды, не
перебивая, принимать
коллективное решение.
Регулятивные:
определять
последовательность
промежуточных действий с
учетом конечного
результата, составлять
план.
Познавательные: учиться
основам смыслового
чтения научных и
познавательных текстов
Коммуникативные:
формировать навыки
учебного сотрудничества в
ходе индивидуальной и
групповой работы.
Регулятивные: оценивать
весомость приводимых
доказательств и
рассуждений.
Познавательные: строить
логические цепочки
рассуждений
Коммуникативные:
способствовать формированию научного
мировоззрения учащихся.
Регулятивные: осознавать
учащимся уровень и
качество усвоения
результата.
Познавательные: уметь
строить рассуждения в
форме связи простых
суждений об объекте, его
строении, свойствах и
связях
Коммуникативные:
формировать коммуникативные действия,
направленные на

решении задач,
приводить примеры

22

Арифметические
текстовые задачи.

Решение арифметических
текстовых задач.

Формировать навыки
решения арифметических
текстовых задач.

Формирование
нравственноэстетического
оценивания
усваиваемого
содержания

23

Задачи с
геометрическими
фигурами.

Решение задач с
геометрическими фигурами.

Задачи с
геометрическими
фигурами.

Формирование
устойчивой
мотивации к
обучению на основе
алгоритма
выполнения задачи

24

Нестандартные методы
решения задач
(графические методы,
перебор вариантов).

Решение задач.

Познакомить с
нестандартными
методами решения задач
(графические методы,
перебор вариантов).

Положительное
отношение к учению,
умение ясно, точно,
грамотно излагать
свои мысли в устной
и письменной речи

25

Элементы
комбинаторики и теории
вероятности.

Решение комбинаторных задач.

Систематизировать
знания учащихся,
формировать навыки
решения задач.

Формирование
способности к
эмоциональному
восприятию
математических
объектов, задач,
решений,
рассуждений

26

Элементы
комбинаторики и теории
вероятности.

Решение комбинаторных задач

Систематизировать и
расширить знания
учащихся, формировать
навыки решения задач.

Желание
приобретать новые
знания, умения,
признание для себя
общепринятых
морально-этических
норм

структурирование
информации по данной
теме.
Регулятивные: осознавать
учащимся уровень и
качество усвоения
результата.
Познавательные:
произвольно и осознанно
владеть общим приемом
решения задач
Коммуникативные:
воспринимать текст с учетом поставленной учебной
задачи, находить в тексте
информацию,
необходимую для решения,
обсуждать полученный
результат.
Регулятивные: искать и
выделять необходимую
информацию.
Познавательные:
применять таблицы,
схемы, модели для
получения информации
Коммуникативные: уметь
выслушивать мнение
членов команды, не
перебивая, принимать
коллективное решение.
Регулятивные: определять
последовательность
промежуточных действий с
учетом конечного
результата, составлять
план.
Познавательные: учиться
основам смыслового
чтения научных и
познавательных текстов
Коммуникативные:
формировать навыки
учебного сотрудничества в
ходе индивидуальной и
групповой работы.
Регулятивные: оценивать
весомость приводимых
доказательств и
рассуждений.
Познавательные: строить
логические цепочки
рассуждений
Коммуникативные:
способствовать формированию научного
мировоззрения учащихся.
Регулятивные: осознавать
учащимся уровень и
качество усвоения
результата.
Познавательные: уметь
строить рассуждения в
форме связи простых
суждений об объекте, его
строении, свойствах и
связях
Коммуникативные:
формировать коммуникативные действия,
направленные на
структурирование
информации по данной
теме.

27

Виды треугольников и их
свойства.

Виды треугольников
свойства.

28

Теорема
Пифагора.
Синус, косинус и тангенс
острого
угла
прямоугольного
треугольника.
Перпендикуляр
и
наклонная

29

Соотношения
сторонами и
треугольника.

и

их

Систематизировать и
расширить знания
учащихся, формировать
навыки решения задач.

Положительное
отношение к
познавательной
деятельности,
критичность
мышления,
инициатива

Особенности выбора переменных
и методики решения задач с
экономическим содержанием.

Сформировать алгоритм
решения прямоугольных
треугольников,
необходимый для
вычисления элементов
геометрических фигур,
формировать навыки
решения задач.

Положительное
отношение к урокам
математики,
ответственное
отношение к учению,
совершенствование
имеющихся знаний и
умений

между
углами

Решение прямоугольных
треугольников, необходимый для
вычисления элементов
геометрических фигур

Сформировать алгоритм
решения прямоугольных
треугольников,
необходимый для
вычисления элементов
геометрических фигур

Готовность и
способность
учащихся
саморазвитию и
самообразованию на
основе мотивации к
обучению и
познанию

30

Параллелограмм и его
свойства.
Признаки
параллелограмма.

Формирование навыков решения
задач

Обобщить и
систематизировать
свойства и признаки
фигуры, формировать
навыки решения задач.

Положительное
отношение к учению,
желание
совершенствовать
имеющиеся знания и
умения

31

Прямоугольник,
ромб,
квадрат и их свойства.

Формирование навыков решения
задач

Обобщить и
систематизировать
свойства и признаки

Формирование
коммуникативной
компетентности в
творческой

Регулятивные: осознавать
учащимся уровень и
качество усвоения
результата.
Познавательные:
произвольно и осознанно
владеть общим приемом
решения задач
Коммуникативные:
воспринимать текст с учетом поставленной учебной
задачи, находить в тексте
информацию,
необходимую для решения,
обсуждать полученный
результат.
Регулятивные: искать и
выделять необходимую
информацию.
Познавательные:
применять таблицы,
схемы, модели для
получения информации
Коммуникативные: уметь
точно и грамотно выражать
свои мысли при
обсуждении изучаемого
материала.
Регулятивные: определять
последовательность
промежуточных действий с
учетом конечного
результата, составлять
план.
Познавательные:
воспроизводить по памяти
информацию,
необходимую для решения
учебной задачи
Коммуникативные:
способствовать формированию научного
мировоззрения учащихся.
Регулятивные: осознавать
учащимся уровень и
качество усвоения
результата.
Познавательные: уметь
строить рассуждения в
форме связи простых
суждений об объекте, его
строении, свойствах и
связях
Коммуникативные:
воспринимать текст с учетом поставленной учебной
задачи, находить в тексте
информацию,
необходимую для решения,
обсуждать полученный
результат.
Регулятивные: оценивать
весомость приводимых
доказательств и
рассуждений.
Познавательные: уметь
осуществлять сравнение и
классификацию по
заданным критериям
Коммуникативные:
слушать других, пытаться
принимать другую точку

фигуры, формировать
навыки решения задач.

деятельности,
преодоление
трудностей

32

Теорема Фалеса. Средняя
линия
треугольника.
Трапеция. Средняя линия
трапеции.

Решение задач.

Систематизировать и
расширить знания
учащихся, формировать
навыки решения задач.

Осознавать свои
трудности и
стремиться к их
преодолению

33

Касательная
к
окружности.
Центральные
и
вписанные углы. Длина
окружности и площадь
круга.

Задачи, решаемые с помощью
окружности, углов.

Систематизировать и
расширить знания
учащихся, формировать
навыки решения задач.

Готовность и
способность
учащихся
саморазвитию и
самообразованию на
основе мотивации к
обучению и
познанию,
коммуникативная
компетентность в
творческой
деятельности

34

Итоговое занятие

Прослушивание и анализ
выступления учащихся

Прослушать и
проанализировать
выступления учащихся с
подготовленными
задачами по изученному
материалу.

Умение ясно и точно
излагать свои мысли
в письменной речи,
ответственное
отношение к учению

зрения, быть готовым
изменить свою.
Регулятивные:
формировать целевые установки учебной
деятельности, выстраивать
последовательность
необходимых операций
(алгоритм действий).
Познавательные: уметь
осуществлять сравнение и
классификацию по
заданным критериям
Коммуникативные:
управлять своим поведением (контроль, само
коррекция, оценка своего
действия).
Регулятивные:
формировать способность
к мобилизации сил и
энергии, к волевому усилию в преодолении
препятствий.
Познавательные:
произвольно и осознанно
владеть общим приемом
решения задач
Коммуникативные:
воспринимать текст с учетом поставленной учебной
задачи, находить в тексте
информацию,
необходимую для решения,
обсуждать полученный
результат.
Регулятивные: оценивать
весомость приводимых
доказательств и
рассуждений.
Познавательные: уметь
осуществлять сравнение и
классификацию по
заданным критериям
Коммуникативные:
слушать других, пытаться
принимать другую точку
зрения, быть готовым
изменить свою.
Регулятивные:
формировать целевые установки учебной
деятельности, выстраивать
последовательность
необходимых операций
(алгоритм действий).
Познавательные: уметь
осуществлять сравнение и
классификацию по
заданным критериям


Наверх
На сайте используются файлы cookie. Продолжая использование сайта, вы соглашаетесь на обработку своих персональных данных. Подробности об обработке ваших данных — в политике конфиденциальности.

Функционал «Мастер заполнения» недоступен с мобильных устройств.
Пожалуйста, воспользуйтесь персональным компьютером для редактирования информации в «Мастере заполнения».